14x+5z=133!42x+15z=396x3z=95!30x15z=4512x=6Wecannoweasilysolveforxtogetx=12.Thecoefficientsonthesecondequationaresmallersoletâsplugthisintothatequationandsolveforz.Hereisthatwork.6123z=933z=93z=12z=4Finally
weneedtodeterminethevalueofy.Thisisveryeasytodo.Recallinthefirststepweusedsubstitutionandinthatstepweusedthefollowingequation.y=4x+5Sinceweknowthevalueofxallweneedtodoisplugthatintothisequationandgetthevalueofy.y=412+5=3Notethatinmanycaseswhereweusedsubstitutionontheveryfirststeptheequationyouâllhaveatthisstepwillcontainbothxâsandzâsandsoyouwillneedbothvaluestogetthethirdvariable.Okay
tofinishthisexampleuphereisthesolution:x=12
y=3andz=4.Asweâveseenwiththetwoexamplesabovethereareavarietyofpathsthatwecouldchoosetotakewhensolvingasystemofthreelinearequationswiththreevariables.Thatwillalwaysbethecase.Thereisnoonetruepathforsolvingthese.However
havingsaidthatthereisoftenapath©PaulDawkinsAlgebraâ370â