write:Also recallthatx-interceptscaneithercrossthex-axisortheycanjusttouchthex-axiswithoutactuallycrossingtheaxis. Noticeaswellfromthegraphsabovethatthex-interceptscaneitherflattenoutast

P(x)
providedP(r)=0.Butthismeansthatx=risalsoasolutiontoP(x)=0.Inotherwords
thezeroesofapolynomialarealsothex-interceptsofthegraph.Also
recallthatx-interceptscaneithercrossthex-axisortheycanjusttouchthex-axiswithoutactuallycrossingtheaxis.Noticeaswellfromthegraphsabovethatthex-interceptscaneitherflattenoutastheycrossthex-axisortheycangothroughthex-axisatanangle.Thefollowingfactwillrelatealloftheseideastothemultiplicityofthezero.FactIfx=risazeroofthepolynomialP(x)withmultiplicitykthen
1.Ifkisoddthenthex-interceptcorrespondingtox=rwillcrossthex-axis.2.Ifkiseventhenthex-interceptcorrespondingtox=rwillonlytouchthex-axisandnotactuallycrossit.Furthermore
ifk>1thenthegraphwillflattenoutatx=r.Finally
noticethatasweletxgetlargeinboththepositiveornegativesense(i.e.ateitherendofthegraph)thenthegraphwilleitherincreasewithoutboundordecreasewithoutbound.Thiswillalwayshappenwitheverypolynomialandwecanusethefollowingtesttodeterminejustwhatwillhappenattheendpointsofthegraph.LeadingCoefficientTestSupposethatP(x)isapolynomialwithdegreen.Soweknowthatthepolynomialmustlooklike
P(x)=axn+Wedon’tknowifthereareanyothertermsinthepolynomial
butwedoknowthatthefirsttermwillhavetobetheonelistedsinceithasdegreen.WenowhavethefollowingfactsaboutthegraphofP(x)attheendsofthegraph.©PaulDawkinsAlgebra–293–

 

Are you looking for This or a Similiar Assignment? 

From essays to dissertations, term papers to thesis projects, our expert team can handle all types of assignments with utmost precision and expertise. No matter the subject or complexity, we are here to provide you with top-quality work tailored to your needs. Your success is our mission.

Click here to ▼ Order NOW