sincethefinaltermwasthetermwefactoredoutweneededtoremindourselvesthattherewasatermthereoriginally.Todothisweneedtheâ+1âandnoticethatitisâ+1âinsteadofâ1âbecausethetermwasoriginallyapositiveterm.Ifithadbeenanegativetermoriginallywewouldhavehadtouseâ1â.Oneofthemorecommonmistakeswiththesetypesoffactoringproblemsistoforgetthisâ1â.Rememberthatwecanalwayscheckbymultiplyingthetwobackouttomakesurewegettheoriginal.Tocheckthattheâ+1âisrequired
letâsdropitandthenmultiplyouttoseewhatweget.3xx53x=3x69x26=3x69x2+3xSo
withouttheâ+1âwedonâtgettheoriginalpolynomial!Becarefulwiththis.Itiseasytogetinahurryandforgettoaddaâ+1âorâ1âasrequiredwhenfactoringoutacompleteterm.(d)9×2(2x+7)12x(2x+7)Thisonelooksalittleoddincomparisontotheothers.However
itworksthesameway.Thereisa3xineachtermandthereisalsoa2x+7ineachtermandsothatcanalsobefactoredout.Doingthefactoringforthisproblemgives
9×2(2x+7)12x(2x+7)=3x(2x+7)(3×4)©PaulDawkinsAlgebraâ35â