theconditionalprobabilitiesforthearcsinthetreemustbeestimated.Thisbegsthequestionofhowsuchprobabilitiesaretobedetermined
es-peciallyforÃeventsÃthatrepresentattackeractions.Severalresearchershavecommentedthatmodelingactionsasrandomvariablesisinadequateforrepre-sentingthepurposivebehaviorsofintelligentattack-ers.(2â4)Finally
aÃconditionalriskmatrixÃ(i.e.
ariskmatrixassumingthatanattacktakesplace)assignsoverallconditionalriskscorestopairsofconse-quenceandvulnerabilityscores
viathefollowingformula:ConditionalRiskScore=ConsequenceScore+VulnerabilityScore.(2)ThisreÃectstheidentity:log(vulnerabilityÃconsequence)=log(vulnerability)+log(consequence)(3)becausethescalesusedtorateconsequenceandvul-nerabilityarelogarithmic.(Therealsoappearstobeanimplicitindependenceassumptionthatallowsvul-nerabilityandconsequencescorestobeassessedsep-arately
whichmightnotberealistic.)Thequalitativeriskratingdoesnotprovidead-equateinformationtoguideresourceallocation
ingeneral.Forexample
itassignsthesamequalitativeriskscore(Ã5Ã)to(a)a100%probabilityofzerofatalities(quantitativerisk=0
qualitativerisk=5+0=5)and(b)a20%probabilityof100fatal-ities(qualitativerisk=3+2=5).Similarly
azeroprobabilityofa$100billionlossisgiventhesameriskscore(Ã11Ã)asacertaintyofa$1billionloss.Suchanomaliesarisebecauseconsequencescoresandvul-nerabilityscoresaresummedtogetriskscores;thus
evenifonescoreiszero
theriskscore(unlikethequantitativerisk)canbenonzero.Thescoringalsocanassignrelativelysmallscorestorelativelylargerisks.Forexample
a0.10probabilityof100deaths(expectedvalue=10deaths)wouldhaveasmallerriskscore(4)thana0.26probabilityof26deaths(expectedvalue=6.76expecteddeaths
riskscore=5).3.LIMITATIONSOFRAMCAPTMFORQUANTITATIVERISKASSESSMENTRAMCAPTMÃsÃquantitativeÃapproach(whichmightbecalledsemi-qualitative)isalsobasedonEquation(1).Vulnerabilityandconsequencenum-bersarecalculatedasthearithmeticaverageoftheupperandlowervaluesoftheÃbinsÃ(thevaluerangesintheprecedingÃqualitativeÃapproach)forattacksuccessprobabilityandconsequenceofasuc-cessfulattack
respectively.Allquantitiesareinter-pretedasexpectedvalues.TheRAMCAPTMframeworkstatesthatanad-vantageofusingtheaboveformulawithadeÃnedsetofscalesforvulnerabilityandconsequenceisthatÃtheriskassociatedwithoneassetcanbeaddedtootherstoobtaintheaggregateriskforanentirefacility…[and]canbeaggregatedand/orcomparedacrosswholeindustriesandeconomicsectors.ThisispreciselythegoalofDHS.ÃHowever
suchsumma-tionisingeneralmathematicallyincorrect
asshowninthefollowingexamples.Moreover
itletsfacilityownersmanipulateriskestimatesupordown
de-pendingonpreferences.Itisunabletodistinguishamongsomerisks(limitedresolution)andcangiveincorrectestimatedriskrankings.Thefollowingex-amplesillustratetheselimitations.3.1.Example:DistortionsDuetoUseofArithmeticAveragesonLogarithmicScalesForthefollowingtworisks:â¢A:(Vulnerability=0.25
Consequence=$400M)â¢B:(Vulnerability=1
Consequence=$60M)
theformulaConditionalRisk=VulnerabilityÃConsequenceimpliesthatAhasalargerconditionalriskthanB($100Mvs.$60M.)However
RAM-CAPTMwouldassignavulnerabilityof(0.125+0.25)/2=0.1875andaconsequenceof(200M+400M)/2=300MtoA
implyinganestimatedcon-ditionalriskof0.1875â300M=$56.25MforA.Itwouldassignavulnerabilityof(0.9+1)/2=0.95andaconsequenceof(50M+100M)/2=$75MtoB
im-plyinganestimatedconditionalriskof0.95â$75M=$71.25MforB.Thus
itreversesthecorrectrankingofthesetworisks.