write:)Thequalitativeriskratingdoesnotprovidead-equateinformationtoguideresourceallocation ingeneral. Forexample itassignsthesamequalitativeriskscore(Ò5Ó)to(a)a100%probabilityofzerofat

theconditionalprobabilitiesforthearcsinthetreemustbeestimated.Thisbegsthequestionofhowsuchprobabilitiesaretobedetermined
es-peciallyforÒeventsÓthatrepresentattackeractions.Severalresearchershavecommentedthatmodelingactionsasrandomvariablesisinadequateforrepre-sentingthepurposivebehaviorsofintelligentattack-ers.(2−4)Finally
aÒconditionalriskmatrixÓ(i.e.
ariskmatrixassumingthatanattacktakesplace)assignsoverallconditionalriskscorestopairsofconse-quenceandvulnerabilityscores
viathefollowingformula:ConditionalRiskScore=ConsequenceScore+VulnerabilityScore.(2)Thisreßectstheidentity:log(vulnerability×consequence)=log(vulnerability)+log(consequence)(3)becausethescalesusedtorateconsequenceandvul-nerabilityarelogarithmic.(Therealsoappearstobeanimplicitindependenceassumptionthatallowsvul-nerabilityandconsequencescorestobeassessedsep-arately
whichmightnotberealistic.)Thequalitativeriskratingdoesnotprovidead-equateinformationtoguideresourceallocation
ingeneral.Forexample
itassignsthesamequalitativeriskscore(Ò5Ó)to(a)a100%probabilityofzerofatalities(quantitativerisk=0
qualitativerisk=5+0=5)and(b)a20%probabilityof100fatal-ities(qualitativerisk=3+2=5).Similarly
azeroprobabilityofa$100billionlossisgiventhesameriskscore(Ò11Ó)asacertaintyofa$1billionloss.Suchanomaliesarisebecauseconsequencescoresandvul-nerabilityscoresaresummedtogetriskscores;thus
evenifonescoreiszero
theriskscore(unlikethequantitativerisk)canbenonzero.Thescoringalsocanassignrelativelysmallscorestorelativelylargerisks.Forexample
a0.10probabilityof100deaths(expectedvalue=10deaths)wouldhaveasmallerriskscore(4)thana0.26probabilityof26deaths(expectedvalue=6.76expecteddeaths
riskscore=5).3.LIMITATIONSOFRAMCAPTMFORQUANTITATIVERISKASSESSMENTRAMCAPTMÕsÒquantitativeÓapproach(whichmightbecalledsemi-qualitative)isalsobasedonEquation(1).Vulnerabilityandconsequencenum-bersarecalculatedasthearithmeticaverageoftheupperandlowervaluesoftheÒbinsÓ(thevaluerangesintheprecedingÒqualitativeÓapproach)forattacksuccessprobabilityandconsequenceofasuc-cessfulattack
respectively.Allquantitiesareinter-pretedasexpectedvalues.TheRAMCAPTMframeworkstatesthatanad-vantageofusingtheaboveformulawithadeÞnedsetofscalesforvulnerabilityandconsequenceisthatÒtheriskassociatedwithoneassetcanbeaddedtootherstoobtaintheaggregateriskforanentirefacility…[and]canbeaggregatedand/orcomparedacrosswholeindustriesandeconomicsectors.ThisispreciselythegoalofDHS.ÓHowever
suchsumma-tionisingeneralmathematicallyincorrect
asshowninthefollowingexamples.Moreover
itletsfacilityownersmanipulateriskestimatesupordown
de-pendingonpreferences.Itisunabletodistinguishamongsomerisks(limitedresolution)andcangiveincorrectestimatedriskrankings.Thefollowingex-amplesillustratetheselimitations.3.1.Example:DistortionsDuetoUseofArithmeticAveragesonLogarithmicScalesForthefollowingtworisks:•A:(Vulnerability=0.25
Consequence=$400M)•B:(Vulnerability=1
Consequence=$60M)
theformulaConditionalRisk=Vulnerability×ConsequenceimpliesthatAhasalargerconditionalriskthanB($100Mvs.$60M.)However
RAM-CAPTMwouldassignavulnerabilityof(0.125+0.25)/2=0.1875andaconsequenceof(200M+400M)/2=300MtoA
implyinganestimatedcon-ditionalriskof0.1875∗300M=$56.25MforA.Itwouldassignavulnerabilityof(0.9+1)/2=0.95andaconsequenceof(50M+100M)/2=$75MtoB
im-plyinganestimatedconditionalriskof0.95∗$75M=$71.25MforB.Thus
itreversesthecorrectrankingofthesetworisks.

 

Are you looking for This or a Similiar Assignment? 

From essays to dissertations, term papers to thesis projects, our expert team can handle all types of assignments with utmost precision and expertise. No matter the subject or complexity, we are here to provide you with top-quality work tailored to your needs. Your success is our mission.

Click here to ▼ Order NOW