write:u=x5u2=x10Usingthissubstitutiontheequationbecomes 2u2u4=0Thisdoesn’tfactorandsowe’llneedtousethequadraticformulaonit. Fromthequadraticformulathesolutionsare u=1p334Now inorder

u=x5u2=x10Usingthissubstitutiontheequationbecomes
2u2u4=0Thisdoesn’tfactorandsowe’llneedtousethequadraticformulaonit.Fromthequadraticformulathesolutionsare
u=1p334Now
inordertogetbacktox’swearegoingtoneeddecimalsvaluesfortheseso
u=1+p334=1:68614u=1p334=1:18614Now
usingthesubstitutiontogetbacktox’sgivesthefollowing
u=1:68614:x5=1:68614x=(1:68614)15=1:11014u=1:18614:x5=1:18614x=(1:18614)15=1:03473Wehadtouseacalculatortogetthefinalanswerforthese.Thisisoneofthereasonsthatyoudon’ttendtoseetoomanyofthesedoneinanAlgebraclass.Theworkand/oranswerstendtobealittlemessy.©PaulDawkinsAlgebra–132–

 

Are you looking for This or a Similiar Assignment? 

From essays to dissertations, term papers to thesis projects, our expert team can handle all types of assignments with utmost precision and expertise. No matter the subject or complexity, we are here to provide you with top-quality work tailored to your needs. Your success is our mission.

Click here to ▼ Order NOW