x=277Notethatwedidnâtusethesolutionsetnotationhere.Forsinglesolutionswewillrarelydothatinthisclass.However
ifwehadwantedtothesolutionsetnotationforthisproblemwouldbe
277Beforeproceedingtothenextproblemletâsfirstmakeaquickcommentabouttheâmessinessâofthisanswer.DoNOTexpectallanswerstobenicesimpleintegers.WhilewedotrytokeepmostanswersimpleoftentheywonâtbesodoNOTgetsolockedintotheideathatananswermustbeasimpleintegerthatyouimmediatelyassumethatyouâvemadeamistakebecauseoftheâmessinessâoftheanswer.(b)m23+1=2m7Okay
withthisonewewonâtbeputtingquiteasmuchexplanationintotheproblem.InthiscasewehavefractionssotomakeourlifeeasierwewillmultiplybothsidesbytheLCD
whichis21inthiscase.Afterdoingthattheproblemwillbeverysimilartothepreviousproblem.Noteaswellthatthedenominatorsareonlynumbersandsowewonâtneedtoworryaboutdivisionbyzeroissues.LetâsfirstmultiplybothsidesbytheLCD.21m23+1=2m72121m23+21(1)=2m7217(m2)+21=(2m)(3)Becarefultocorrectlydistributethe21throughtheparenthesisontheleftside.Ev-erythinginsidetheparenthesisneedstobemultipliedbythe21beforewesimplify.At©PaulDawkinsAlgebraâ74â